

EIAR Volume 4: Offshore Infrastructure Technical Appendices Appendix 4.3.6-5 Offshore Ornithology Migratory Collision Risk Modelling

RWE #SLR GOBe

Kish Offshore Wind Ltd

www.dublinarray-marineplanning.ie

RWE Renewables Ireland Ltd.

Offshore Ornithology Migratory Collision Risk Modelling

Copyright © 2025 GoBe Consultants Ltd

All pre-existing rights reserved.

This document is supplied on and subject to the terms and conditions of the Contractual Agreement relating to this work, under which this document has been supplied.

Confidentiality

This document is confidential.

All information contained within this document is proprietary to GoBe Consultants Ltd and is disclosed in confidence to the specified parties. Information herein may not be reproduced in whole or in part without the express permission from GoBe Consultants Ltd.

www.gobeconsultants.com

Revision	Date	Status	Author:	Checked by:	Approved by:
1.0	15/03/2024	Draft	JS	RI	JG
2.0	25/10/2024	Final	JS	RI	JG

Contents

1	I	ntroduction	5
	1.1	Team competencies	5
	1.2	Project Background	6
	1.3	Migratory Collision Risk Modelling	6
2	I	Migratory CRM	7
	2.1	Methodology	7
	2.2	Inputs	7
	-	Furbine parameters	7
		Species selection and screening process	8
		Bird parameters	12
		Avoidance rates	16
		Species biometrics	16
		Seabird flight speeds	16
3	l	Results	17
4		References	21

Tables

Table 1–1 mCRM assessment team competencies.	5
Table 2–1: Turbine parameters for Option A, which was identified as the MDO	8
Table 2–2: Predicted mean wind availability and downtime	8
Table 2–3: Screening of migratory species whose flight paths are predicted to overlap with the	
Dublin Array array	9
Table 2–4. Defined migration seasons used in the mCRM tool	12
Table 2–5. Species biometrics used in the mCRM tool. Standard deviation (SD) included in brackets	.
	14
Table 3–1: Summary of annual collision estimates following the Dublin Array approach for Option $ar{r}$	4
(50 WTGs)	17
Table 3–2 Summary of annual collision estimates following the Dublin Array approach for Option B	6
(45 WTGs)	18
Table 3–3: Summary of annual collision estimates following the Dublin Array approach for Option (С
(39 WTGs)	19

Dublin Array Windfarm Ltd Acronyms

Term	Definition
BTO	British Trust for Ornithology
Dublin Array	Dublin Array Offshore Wind Farm
EIA	Environmental Impact Assessment
EIAR	Environmental Impact Assessment Report
GIS	Geographical Information System
JNCC	Joint Nature Conservation Committee
km	Kilometres
mCRM	Migratory collision risk model
MDS	Maximum design scenario
MW	Megawatt
NPWS	National Parks and Wildlife Service
0&M	Operations and maintenance
RWE	RWE Renewables Ireland Ltd (a wholly owned subsidiary of RWE AG)
SOSS	Strategic Ornithological Support Services
SPA	Special Protection Area
UK	United Kingdom
WTG	Wind turbine generator

1 Introduction

1.1 Team competencies

1.1.1 Detailed below (Table 1–1) are the team competencies of those involved with the migratory collision risk model (mCRM) annex.

Table 1–1 mCRM	assessment team	competencies.
----------------	-----------------	---------------

Discipline	Specialist	Qualifications	Experience
Ornithology	James Slingsby, GoBe	PhD, MSci	James is a senior ornithology consultant at GoBe, and formerly a marine environmental scientist at the University of the Highlands and Islands, with a strong background in statistical and quantitative research. He has experience in academic research and consultancy within environmental sciences specifically in the fields of marine seabird ecology, marine mammal ecology, marine renewable energy and remote sensing. His published scientific research is associated with the following fields: marine renewable energy, marine mammals, marine ornithology,
			uncrewed aerial vehicles and machine learning.
Ornithology	Jessica George, GoBe	MSc, BSc	Within her role as a senior ornithology consultant at GoBe, Jessica has developed a good understanding of offshore windfarm developments in regard to seabirds. Jessica has worked on projects in England, Scotland, Wales, Ireland, Isle of Man, the Netherlands and Poland (Baltic Sea). Jessica has focused on offshore ornithology OWF assessments, post consent monitoring and derogation (Article 6(4) of Habitats Directive), developing compensation measures for a variety of species.
Ornithology	Ryan Irvine, GoBe	BSc	Ryan has worked in ornithology for over 22 years with various roles with the JNCC, RSPB and consultancies. Ryan has gained vast experience in marine surveys of seabirds and cetaceans, report writing and data analysis. In his role at GoBe, Ryan has worked mainly on compensation and derogation work for a variety of seabirds (Article 6(4) of Habitats Directive) as well as working on ornithological assessments and various mCRM reports.

Discipline	Specialist	Qualifications	Experience
Ornithology	Colin Barton, Cork Ecology	BSc	Colin started work with JNCC as a marine surveyor in 1993, gaining experience in marine surveys of seabirds and cetaceans, along with report writing and data analysis. He also participated in surveys of breeding seabirds, including a nationally important common gull colony.

1.2 Project Background

- 1.2.1 Dublin Array is a proposed offshore wind farm on the Kish and Bray Banks. The Kish and Bray Banks are located, approximately 10 km off the east coast of Ireland, immediately south of Dublin city off the coast of counties Dublin and Wicklow. The offshore wind farm will be located within an area of approximately 59 km², in water depths ranging from 2 m to 50 m lowest astronomical tide (LAT). This technical annex has been produced to support the EIAR Offshore Ornithology chapter (3.6 Offshore Ornithology) and considers the potential impact to migratory birds that are not typically recorded in monthly surveys due to their movements over a short period of time and often at night or during bad weather (Wright *et al.,* 2012).
- 1.2.2 The Irish Sea is subject to pronounced passages of birds travelling to and from the UK, Europe and further afield (Stienen *et al.*, 2007). This includes the migratory movements of non-seabirds such as waders, wildfowl, passerines and non-passerines. Due to the mix of birds present, the Dublin Array area is used at different times of the year by birds (i) overwintering in the area; (ii) foraging from nearby breeding coastal colonies; and (iii) on post-breeding dispersal, migration and pre-breeding return.

1.3 Migratory Collision Risk Modelling

- 1.3.1 Assessing the potential impact from collision risk with wind turbines is an essential part of the EIA assessment process. The level of risk from collisions with turbines is estimated using Collision Risk Modelling (CRM). The species that are unlikely to be impacted are screened out and excluded from the modelling.
- 1.3.2 Site specific surveys were conducted for the Dublin Array area and surrounding area (4.3.6-1 Offshore Ornithology Technical Baseline). The results provide information for key seabird species for each biological period but are limited when it comes to migratory species, particularly non-seabirds. This is due to the snapshot nature of baseline surveys which has the potential to miss some species moving through in short pulses, in poor weather or at night, or at high altitudes, which makes recording their numbers extremely complex using standard methods.
- 1.3.3 To model the movements of migratory birds for Dublin Array the Marine Scotland Avian Migration Collision Risk Model Shiny Application ("mCRM App"; HiDef Aerial Surveying Ltd., 2024¹) was used. Although this tool was developed for Scotland, the tool contains spatial coverage of species for use in Irish waters.

¹ Available at: <u>https://hidefdevo.shinyapps.io/mCRM/</u> [Accessed March 2024].

2 Migratory CRM

2.1 Methodology

2.1.1 The migratory CRM was undertaken using the mCRM App. The mCRM App is a combination of the British Trust for Ornithology (BTO) Strategic Ornithological Support Services (SOSS) tool and a stochastic adaptation of the Band (2012) migration collision risk worksheet. The mCRM App was accessed via the 'Shiny App' interface, which is a user-friendly graphical interface accessible via a standard web-browser or within R statistical software (R Core Team, 2021) that uses an R code to estimate migratory collision risk (Donovan 2018). For this assessment the latest version of the mCRM App was downloaded and run locally within R (v0.4.1). The advantage of the mCRM App is that it provides a clear and transparent audit trail for all modelling runs, which enables regulators to easily access and reproduce the results of any modelling scenario.

2.1.2 The mCRM App provides two functions:

- Creates population estimates in wind farms by sampling migratory pathways via straight lines drawn between Irish, UK and non-UK countries; and
- Runs a stochastic version of the migratory CRM based on the population estimates and useinput parameters.

2.2 Inputs

Turbine parameters

2.2.1 A GIS shapefile of the Dublin Array array area footprint was added to the mCRM App. The OWF and turbine parameters used in the CRM are presented in Table 2–1 and Table 2–2. Upper and lower values for rotation speed and pitch were not included in the model because suitable information on rotor speed and pitch variability was not available. Note that the choice of value for determining the maximum and minimum collision rate depended on the relationship between each parameter and collision risk; in some cases, the larger parameter values lead to fewer estimated collisions. Based on UK standard practice, a 'Large Array Correction' factor was applied to the CRM, which takes into account multiple rows of WTGs which are common in large sized arrays.

Table 2–1: Turbine parameters for Option A, which was identified as the MDO.

Parameter	WTG A
Capacity (MW)	15.0
No. WTGs	50
Latitude (°N)	53.23
Width of array (km)	48.85
No. Blades	3
Rotor radius (m)	118
Max blade width (m)	8.5
Rotation Speed (RPM)	5.0
Rotation Speed SD	0
Blade Pitch (°)	2.4
Blade Pitch SD	0

Table 2–2: Predicted mean wind availability and downtime.

Parameter	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Wind availability (%)	99	99	99	99	99	99	99	99	99	99	99	99
Mean downtime (%)	0	0	0	0	0	0	0	0	0	0	0	0
Mean downtime SD	0	0	0	0	0	0	0	0	0	0	0	0

Species selection and screening process

- 2.2.2 All species in the mCRM App were considered. If there was no overlap with the array area based on their migratory zones as defined in the tool (as defined in Woodward *et al.* (2023)), they were not considered further. The resulting list of species considered for migratory CRM is presented in Table 2–3, the species not included are avocet (*Recurvirostra avosetta*), bean goose (*Anser fabalis*), bittern (*Botaurus stellari*), dark-bellied brent goose (*Branta bernicla bernicla*), European white-fronted goose (*Anser albifrons albifrons*), Greenland barnacle goose (*Branta leucopsis*), honey buzzard (*Pernis apivorus*), Icelandic greylag goose (*Anser anser anser*), Montagu's harrier (*Circus pygargus*), nightjar (*Caprimulgus europaeus*), pink-footed goose (*Anser brachyrhynchus*), red-necked phalarope (*Phalaropus lobatus*), stone curlew (*Burhinus oedicnemus*), Svalbard barnacle goose (*Branta leucopsis*), Svalbard barnacle goose (*Branta bernicla hrota*) and velvet scoter (*Melanitta fusca*). Northern gannet (*Morus bassanus*) was also not included as this species has been assessed in the Seabird CRM Technical Report (Part 1: Volume 4 of the EIAR: Appendix 4.3.7-2).
- 2.2.3 A screening exercise was then undertaken to identify which species require CRM, using a threshold based on the percentage of the population predicted to pass through the array area. If the percentage was equal to or greater than 1%, the species were screened in. Species below this threshold were screened out as the predicted impact would be so small that it would have no material impact on the population.

Table 2–3: Screening of migratory species whose flight paths are predicted to overlap with the Dublin Array array

Species	Number of individuals estimated to	SD	% of migratory	Screened in/out
	nass through		estimated to	
	the array		pass through	
			the array	
Bar-tailed godwit	50	16	0.3	Out
Limosa lapponica				
Black-tailed godwit	1,455	254	1.5	In
Limosa limosa				
Bewick's swan	1	0	4.8	In
Cygnus columbianus	11	2	0.0	Out
BIACK-INFOALED DIVER	11	3	0.9	Out
Canadian light-hellied	680	121	1.5	In
brent goose				
Branta bernicla hrota				
Common scoter	438	102	1.1	In
Melanitta nigra				
Corncrake	175	35	1	In
Crex crex				
Curlew	743	155	1.1	In
Numenius arquata				
Dotterel	3	1	0.8	Out
Charadrius morinellus	7 5 7 7	1205	1.4	1
Duniin Calidric albing	1,577	1382	1.4	in
Eider	525	101	16	In
Somateria mollissima	525	TOT	1.0	111
Golden plover	7 926	1841	0.9	Out
Pluvialis apricaria	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1011	0.0	Suc
Goldeneye	182	31	1.4	In
, Bucephala clangula				
Great crested grebe	70	12	2.4	In
Podiceps cristatus				
Great northern diver	42	11	0.8	Out
Gavia immer				
Greenland white-fronted	167	29	1.7	In
goose				
Anser albifrons				
JIUVITOSTTIS	17	4	1.2	
Greensnank Tringg nebularig	1/	4	1.2	1[1
Grev plover	36	7	1.2	In
Pluvialis sauatarola	50	/	1.2	
Hen harrier	15	3	1.4	In
Circus cvaneus	_			

⋙

Species	Number of	SD	% of	Screened
	individuals		migratory	in/out
	estimated to		population	
	pass through		estimated to	
	the array		nass through	
	the array		the arrav	
Knot	1,254	259	1.2	In
Calidris canutus				
Lapwing Vanellus vanellus	1,048	190	1.2	In
Long-tailed duck <i>Clangula hyemalis</i>	197	36	1.5	In
Mallard	317	66	1.1	In
Anas platyrhynchos				
Marsh harrier <i>Circus aeruginosus</i>	31	6	1.2	In
Merlin	55	11	1.3	In
Falco columbarius				
Osprey	5	2	0.7	Out
Pandion haliaetus				
Oystercatcher	1,731	386	1.2	In
Haematopus ostralegus				
Pintail	66	16	1	In
Anas acuta	1 4 5	27	1.2	
Pochard Aythya ferina	145	27	1.3	In
Purple sandpiper	74	17	1.1	In
Calidris maritima				
Red-breasted merganser	82	17	1.3	In
Mergus serrator				
Redshank	1,436	294	1.1	In
Tringa totanus				
Red-throated diver	73	20	0.8	Out
Gavia stellata	4.050	205	4.2	
Ringed plover	1,058	205	1.3	In
	201	70	1.2	
Rull Calidric puanax	301	70	1.2	111
Culluris puyllux	557	115	1	
Calidris alba	557	113	T	111
	39	8	16	In
Avthva marila	55	0	1.0	111
Shelduck	123	26	12	In
Tadorna tadorna	125	20	1.2	
Short-eared owl	161	31	1.1	In
Asio flammeus				
Shoveler	31	7	1.4	In
Anas clypeata				
Slavonian grebe	12	3	1.1	In

10 of 23

Species	Number of individuals estimated to pass through the array	SD	% of migratory population estimated to pass through the array	Screened in/out
Podiceps auritus				
Snipe Gallinago gallinago	31,656	7092	1	In
Spotted crake <i>Porzana porzana</i>	1	0	3.8	In
Teal Anas crecca	1,595	362	1.1	In
Tufted duck Aythya fuligula	677	137	1	In
Turnstone Arenaria interpres	1,179	224	1.2	In
Whimbrel Numenius phaeopus	54	11	1.1	In
White-tailed eagle Haliaeetus albicilla	2	1	0.7	Out
Whooper swan <i>Cygnus cygnus</i>	231	47	0.9	Out
Wigeon Anas penelope	1,794	396	1	In
Wood sandpiper Tringa glareola	1	0	1.9	In

- 2.2.4 It is important to note that the species population estimates provided within the mCRM App defaults to the UK population sizes, which are not representative of Irish populations. To make it applicable to an OWF in the Irish Sea, the defined populations in the tool were altered to reflect a truer representation of the migratory pathways within the region. To determine appropriate populations and proportions passing the Irish Sea, several methods were used (using the Irish population within Burke *et al.* (2018)):
 - For species with an easterly migration pathway to and from Ireland (e.g. Bewick's swan) the population was set at the Irish population in Burke *et al.* (2018);
 - For species with a northerly or north-westerly migratory route to and from Ireland (e.g. light-bellied brent goose) a precautionary measure was used by adding 25% of the UK population (population derived in the mCRM App) to the Irish population (Burke *et al.*, 2018) to include any individuals from the south-western regions of the UK populations overflying the Irish Sea. If the Irish population plus the 25% of the UK population exceeded the flyway population, then the proportion of the population passing through the proposed development was set to one.

- 2.2.5 Where the all-Ireland populations were not provided in Burke *et al.* (2018), the default UK populations in the mCRM App were used with the following caveats applied:
 - For migratory raptor species and snipe it was assumed that a conservative 50% of the UK population may fly over the Irish Sea during the migration period.
 - For corncrake, which migrates north/south from its breeding range in the north-west of the UK that a precautionary 100% of the UK population was assumed to fly over the Irish Sea.
- 2.2.6 These methods for calculating the populations have also been discussed and agreed with other Irish Phase 1 Project (North Irish Sea Array (NISA) and Codling Wind Park).

Bird parameters

2.2.7 Pre-breeding and post-breeding migration seasons are defined within the mCRM App and are presented in Table 2–4. The species-specific biometric parameters used within CRM are also defined in the mCRM App and are presented in Table 2–5. Each flight type was set as "flapping".

Species	Pre-breeding	Post-breeding	Other
Black-tailed Godwit	Mar -May	Aug - Oct	NA
Bewick's Swan	Feb - Mar	Oct - Dec	NA
Canadian Light-Bellied	Mar - May	Aug - Oct	NA
Brent Goose			
Common Scoter	Apr - May	Jun - Oct	NA
Corncrake	Apr - May	Jul - Aug	NA
Curlew	Mar - May	Jun - Oct	NA
Dunlin	Mar - May	Jun - Oct	NA
Eider	Mar - Apr	Oct - Nov	NA
Goldeneye	Feb - May	Aug - Dec	NA
Great crested Grebe	Mar - Jun	Jul - Nov	Feb - Mar
Greenland White-	Mar - Apr	Sep - Nov	NA
fronted Goose			
Greenshank	Mar - Jun	Aug - Nov	NA
Grey Plover	Mar - May	Jul - Sep	NA
Hen Harrier	Mar - May	Sep - Nov	NA
Knot	Feb - May	Jun - Oct	NA
Lapwing	Jan - May	Oct - Nov	NA
Long-tailed duck	Mar - May	Sep - Oct	NA
Mallard	Apr - Jun	Sep - Oct	Jan - Mar
Marsh Harrier	Mar - May	Aug - Nov	NA
Merlin	Mar - May	Aug - Nov	NA
Oystercatcher	Jan - Mar	Jul - Nov	NA
Pintail	Mar - May	Aug - Nov	NA
Pochard	Mar - May	Aug - Nov	NA
Purple Sandpiper	Mar - May	Jul - Nov	NA
Red-breasted	Apr - Jul	Aug - Nov	NA
Merganser			
Redshank	Mar - May	Jul - Sep	NA
Ringed Plover	Mar - May	Aug - Oct	NA

(ﷺ

Table 2–4. Defined migration seasons used in the mCRM tool.

Species	Pre-breeding	Post-breeding	Other
Ruff	Mar - May	Jul - Nov	NA
Sanderling	Apr - Jun	Jul - Oct	NA
Scaup	Feb - May	Sep - Nov	NA
Shelduck	Jan - Feb	Jun - Jul	Aug - Dec
Short-eared Owl	Mar - May	Jul - Oct	NA
Shoveler	Mar - Jun	Jul - Aug	Sep - Dec
Slavonian Grebe	Feb - Apr	Aug - Oct	NA
Snipe	Mar - May	Aug - Oct	Oct - Dec
Spotted Crake	May - Jun	Jul - Oct	NA
Teal	Feb - May	Jul - Dec	NA
Tufted Duck	Apr - Jun	Sep - Oct	NA
Turnstone	Jan - Jun	Jul - Aug	NA
Whimbrel	Apr - Jun	Jun - Oct	NA
Wigeon	Mar - Apr	Aug - Nov	NA
Wood Sandpiper	Apr - May	Jul - Sep	NA

Dublin Array Offshore Wind Farm

Revision: 2.0

Table 2–5. Species biometrics used in the mCRM tool. Standard deviation (SD) included in brackets.

Species	Body length (m)	Wingspan (m)	Flight speed (ms-1)	Proportion at PCH	Avoidance Rate
Black-tailed Godwit	0.42 (0.02)	0.76 (0.02)	18.10 (6.00)	1	0.999 (0)
Bewick's Swan	1.21 (0.04)	1.96 (0.04)	24.00 (7.60)	0.50	0.988 (0.0009)
Canadian Light-Bellied	0.58 (0.02)	1.15 (0.02)	17.90 (6.10)	0.50	0.999 (0.0001)
Brent Goose					
Common Scoter	0.49 (0.03)	0.84 (0.03)	22.10 (4.00)	1.00	0.985 (0.0008)
Corncrake	0.28 (0.02)	0.50 (0.02)	13.00 (2.00)	1.00	0.995 (0.00001)
Curlew	0.55 (0.02)	0.90 (0.02)	15.40 (3.30)	1.00	0.999 (0)
Dunlin	0.18 (0.01)	0.40 (0.01)	15.30 (1.90)	1.00	0.999 (0)
Eider	0.60 (0.03)	0.94 (0.03)	17.34 (2.40)	0.25	0.985 (0.0008)
Goldeneye	0.46 (0.01)	0.72 (0.01)	20.30 (3.80)	1.00	0.985 (0.0008)
Great crested Grebe	0.48 (0.02)	0.88 (0.02)	21.13 (1.55)	1.00	0.995 (0.00001)
Greenland White-	0.72 (0.06)	1.48 (0.06)	18.75 (7.19)	1.00	0.999 (0.0001)
fronted Goose					
Greenshank	0.32 (0.01)	0.69 (0.01)	12.30 (3.30)	1.00	0.999 (0)
Grey Plover	0.28 (0.01)	0.77 (0.01)	16.50 (1.80)	1.00	0.999 (0)
Hen Harrier	0.48 (0.02)	1.10 (0.02)	11.40 (1.10)	1.00	0.995 (0.0001)
Knot	0.24 (0.01)	0.59 (0.01)	24.60 (3.30)	1.00	0.999 (0)
Lapwing	0.30 (0.01)	0.84 (0.01)	12.80 (1.30)	1.00	0.999 (0)
Long-tailed duck	0.44 (0.01)	0.76 (0.01)	19.70 (1.70)	1.00	0.985 (0.0008)
Mallard	0.58 (0.02)	0.90 (0.02)	15.86 (2.00)	1.00	0.985 (0.0008)
Marsh Harrier	0.52 (0.02)	1.22 (0.02)	13.20 (2.90)	0.50	0.995 (0.0001)
Merlin	0.28 (0.02)	0.56 (0.02)	12.70 (5.80)	1.00	0.989 (0.0003)
Oystercatcher	0.42 (0.02)	0.83 (0.02)	13.00 (2.50)	1.00	0.999 (0)
Pintail	0.58 (0.02)	0.88 (0.02)	21.90 (2.00)	1.00	0.985 (0.0008)
Pochard	0.46 (0.01)	0.77 (0.01)	23.60 (2.00)	1.00	0.985 (0.0008)
Purple Sandpiper	0.21 (0.01)	0.44 (0.01)	15.30 (1.90)	1.00	0.999 (0)
Red-breasted	0.55 (0.01)	0.78 (0.01)	22.00 (2.90)	1.00	0.985 (0.0008)
Merganser					

14 of 23

Species	Body length (m)	Wingspan (m)	Flight speed (ms-1)	Proportion at PCH	Avoidance Rate
Redshank	0.28 (0.01)	0.62 (0.01)	15.30 (4.10)	1.00	0.999 (0)
Ringed Plover	0.19 (0.01)	0.52 (0.01)	16.00 (1.10)	1.00	0.999 (0)
Ruff	0.25 (0.01)	0.53 (0.01)	16.90 (1.81)	1.00	0.999 (0)
Sanderling	0.20 (0.01)	0.42 (0.01)	21.40 (1.10)	1.00	0.999 (0)
Scaup	0.46 (0.01)	0.78 (0.01)	21.10 (2.00)	1.00	0.985 (0.0008)
Shelduck	0.62 (0.02)	1.12 (0.02)	18.20 (4.30)	0.50	0.985 (0.0008)
Short-eared Owl	0.38 (0.02)	1.02 (0.02)	9.70 (2.00)	1.00	0.995 (0.0001)
Shoveler	0.48 (0.02)	0.77 (0.02)	18.30 (2.00)	1.00	0.985 (0.0008)
Slavonian Grebe	0.34 (0.02)	0.62 (0.02)	21.13 (1.55)	1.00	0.995 (0.00001)
Snipe	0.26 (0.01)	0.46 (0.01)	17.10 (2.70)	1.00	0.999 (0)
Spotted Crake	0.23 (0.02)	0.40 (0.02)	13.00 (2.00)	1.00	0.995 (0.00001)
Teal	0.36 (0.02)	0.61 (0.02)	17.40 (1.60)	1.00	0.985 (0.0008)
Tufted Duck	0.44 (0.01)	0.70 (0.01)	21.10 (1.10)	1.00	0.985 (0.0008)
Turnstone	0.23 (0.01)	0.54 (0.01)	10.00 (3.30)	1.00	0.999 (0)
Whimbrel	0.41 (0.02	0.82 (0.02)	13.8 (0.40)	1.00	0.999 (0)
Wigeon	0.48 (0.02)	0.80 (0.02)	18.50 (2.00)	1.00	0.985 (0.0008)
Wood Sandpiper	0.20 (0.01)	0.56 (0.01)	9.60 (1.70)	1.00	0.999 (0)

Avoidance rates

2.2.8 Avoidance rates (AR) are a key parameter in the CRM, they take into consideration that birds will undertake avoidance behaviour in response to the presence of a wind farm to prevent collision. This can occur at three scales (Cook *et al.*, 2014); micro-avoidance (avoiding individual turbine blades); meso-avoidance (avoiding whole wind turbines, not just the rotor-swept area) and macro-avoidance (avoiding the whole wind farm array area and buffer). The AR used in CRM for each species, presented in Table 2–5, are set in the mCRM App as recommended by NatureScot and checked by Cook (*pers comm*). The AR used in the tool are based upon the most recent evidence (Woodward *et al.*, 2023).

Species biometrics

2.2.9 The species-specific biometric input parameters (body length and wingspan) used in the CRM are provided in Table 2–5. The biometrics for all species were taken as presented in the mCRM App, on the basis of the biometric data from Snow and Perrins (1998).

Seabird flight speeds

2.2.10 Species-specific flight speeds used in the CRM assessment are presented in Table 2–5. Flight speeds were taken as presented in the mCRM App as per Alerstam *et al.* (2007).

Revision: 2.0

3 Results

3.1.1 This section presents the outputs from the CRM analysis for each of the screened in migratory species. A summary of the results for each species for Option A is presented in Table 3–1, Option B in Table 3–2 and Option C in Table 3–3.

Table 3–1: Summary of annual collision estimates following the Dublin Array approach for Option A
(50 WTGs).SpeciesPre-breedingPost-breedingOtherTotalBlack-tailed godwit 0.014 ± 0.003 0.014 ± 0.003 0 ± 0 0.028 ± 0.004 Bewick's swan 0 ± 0 0 ± 0 0 ± 0 0 ± 0 Black-throated diver 0 ± 0 0 ± 0 0 ± 0 0 ± 0 Canadian light-bellied brent 0.004 ± 0.001 0.004 ± 0.001 0 ± 0 0.008 ± 0.001

Black-tailed godwit	0.014 ± 0.003	0.014 ± 0.003	0 ± 0	0.028 ± 0.004
Bewick's swan	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Black-throated diver	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Canadian light-bellied brent	0.004 ± 0.001	0.004 ± 0.001	0 ± 0	0.008 ± 0.001
goose				
Common scoter	0.064 ± 0.015	0.064 ± 0.015	0 ± 0	0.128 ± 0.021
Corncrake	0.008 ± 0.002	0.008 ± 0.002	0 ± 0	0.016 ± 0.003
Curlew	0.008 ± 0.002	0.008 ± 0.002	0 ± 0	0.016 ± 0.003
Dunlin	0.068 ± 0.012	0.068 ± 0.012	0 ± 0	0.136 ± 0.017
Eider	0.02 ± 0.004	0.02 ± 0.004	0 ± 0	0.04 ± 0.006
Goldeneye	0.026 ± 0.005	0.026 ± 0.005	0 ± 0	0.052 ± 0.007
Great crested grebe	0.003 ± 0.001	0.003 ± 0.001	0.003 ± 0.001	0.009 ± 0.002
Great northern diver	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Greenland white-fronted	0.002 ± 0.001	0.002 ± 0.001	0 ± 0	0.004 ± 0.001
goose				
Greenshank	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Grey plover	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Hen harrier	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Knot	0.012 ± 0.002	0.012 ± 0.002	0 ± 0	0.024 ± 0.003
Lapwing	0.01 ± 0.002	0.01 ± 0.002	0 ± 0	0.02 ± 0.003
Long-tailed duck	0.028 ± 0.005	0.028 ± 0.005	0 ± 0	0.056 ± 0.007
Mallard	0.049 ± 0.01	0.049 ± 0.01	0.049 ± 0.01	0.147 ± 0.017
Marsh harrier	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Merlin	0.006 ± 0.006	0.006 ± 0.006	0 ± 0	0.012 ± 0.008
Oystercatcher	0.017 ± 0.004	0.017 ± 0.004	0 ± 0	0.034 ± 0.006
Pintail	0.01 ± 0.002	0.01 ± 0.002	0 ± 0	0.02 ± 0.003
Pochard	0.021 ± 0.004	0.021 ± 0.004	0 ± 0	0.042 ± 0.006
Purple sandpiper	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Red-breasted merganser	0.012 ± 0.003	0.012 ± 0.003	0 ± 0	0.024 ± 0.004
Redshank	0.014 ± 0.003	0.014 ± 0.003	0 ± 0	0.028 ± 0.004
Ringed plover	0.01 ± 0.002	0.01 ± 0.002	0 ± 0	0.02 ± 0.003
Ruff	0.003 ± 0.001	0.003 ± 0.001	0 ± 0	0.006 ± 0.001
Sanderling	0.005 ± 0.001	0.005 ± 0.001	0 ± 0	0.01 ± 0.001
Scaup	0.006 ± 0.001	0.006 ± 0.001	0 ± 0	0.012 ± 0.001
Shelduck	0.01 ± 0.002	0.01 ± 0.002	0.01 ± 0.002	0.03 ± 0.003
Short-eared owl	0.008 ± 0.002	0.008 ± 0.002	0 ± 0	0.016 ± 0.003
Shoveler	0.005 ± 0.001	0.005 ± 0.001	0.005 ± 0.001	0.015 ± 0.002
Slavonian grebe	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Snipe	0.291 ± 0.065	0.291 ± 0.065	0.291 ± 0.065	0.873 ± 0.113

⋙

Gobe

Dublin Array Windfarm Ltd

APEMGroup

Species	Pre-breeding	Post-breeding	Other	Total
Spotted crake	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Teal	0.225 ± 0.053	0.225 ± 0.053	0 ± 0	0.45 ± 0.075
Tufted duck	0.096 ± 0.02	0.096 ± 0.02	0 ± 0	0.192 ± 0.028
Turnstone	0.011 ± 0.002	0.011 ± 0.002	0 ± 0	0.022 ± 0.003
Whimbrel	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Wigeon	0.262 ± 0.06	0.262 ± 0.06	0 ± 0	0.524 ± 0.085
Wood sandpiper	0 ± 0	0 ± 0	0 ± 0	0 ± 0

Table 3–2 Summary of annual collision estimates following the Dublin Array approach for Option B (45 WTGs).

Species	Pre-breedi <u>ng</u>	Post-breed <u>ing</u>	Other	Total
Black-tailed godwit	0.014 ± 0.003	0.014 ± 0.003	0 ± 0	0.028 ± 0.004
Bewick's swan	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Black-throated diver	0.004 ± 0.001	0.004 ± 0.001	0 ± 0	0.008 ± 0.001
Canadian light-bellied brent	0.063 ± 0.013	0.063 ± 0.013	0 ± 0	0.126 ± 0.018
goose				
Common scoter	0.008 ± 0.001	0.008 ± 0.001	0 ± 0	0.016 ± 0.001
Corncrake	0.007 ± 0.002	0.007 ± 0.002	0 ± 0	0.014 ± 0.003
Curlew	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Dunlin	0.062 ± 0.065	0.062 ± 0.065	0 ± 0	0.124 ± 0.092
Eider	0.019 ± 0.003	0.019 ± 0.003	0 ± 0	0.038 ± 0.004
Goldeneye	0.025 ± 0.005	0.025 ± 0.005	0 ± 0	0.05 ± 0.007
Great crested grebe	0.003 ± 0.001	0.003 ± 0.001	0.003 ± 0.001	0.009 ± 0.002
Great northern diver	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Greenland white-fronted	0.002 ± 0.001	0.002 ± 0.001	0 ± 0	0.004 ± 0.001
goose				
Greenshank	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Grey plover	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Hen harrier	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Knot	0.011 ± 0.002	0.011 ± 0.002	0 ± 0	0.022 ± 0.003
Lapwing	0.009 ± 0.002	0.009 ± 0.002	0 ± 0	0.018 ± 0.003
Long-tailed duck	0.027 ± 0.005	0.027 ± 0.005	0 ± 0	0.054 ± 0.007
Mallard	0.048 ± 0.01	0.048 ± 0.01	0.048 ± 0.01	0.144 ± 0.017
Marsh harrier	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Merlin	0.006 ± 0.005	0.006 ± 0.005	0 ± 0	0.012 ± 0.007
Oystercatcher	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Pintail	0.016 ± 0.003	0.016 ± 0.003	0 ± 0	0.032 ± 0.004
Pochard	0.009 ± 0.002	0.009 ± 0.002	0 ± 0	0.018 ± 0.003
Purple sandpiper	0.02 ± 0.004	0.02 ± 0.004	0 ± 0	0.04 ± 0.006
Red-breasted merganser	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Redshank	0.013 ± 0.003	0.013 ± 0.003	0 ± 0	0.026 ± 0.004
Ringed plover	0.01 ± 0.002	0.01 ± 0.002	0 ± 0	0.02 ± 0.003
Ruff	0.003 ± 0.001	0.003 ± 0.001	0 ± 0	0.006 ± 0.001
Sanderling	0.005 ± 0.001	0.005 ± 0.001	0 ± 0	0.01 ± 0.001
Scaup	0.005 ± 0.001	0.005 ± 0.001	0 ± 0	0.01 ± 0.001
Shelduck	0.009 ± 0.002	0.009 ± 0.002	0.009 ± 0.002	0.027 ± 0.003

(≋)

*

(___)

GOBC APEM Group

Dublin Array Windfarm Ltd

Other Short-eared owl 0.008 ± 0.001 0.008 ± 0.001 0 ± 0 0.016 ± 0.001 Shoveler 0.004 ± 0.001 0.004 ± 0.001 0.004 ± 0.001 0.012 ± 0.002 Slavonian grebe 0.001 ± 0 0.001 ± 0 0.002 ± 0 0 ± 0 Snipe 0.276 ± 0.065 0.276 ± 0.065 0.276 ± 0.065 0.828 ± 0.113 Spotted crake 0 ± 0 0 ± 0 0 ± 0 0 ± 0 Teal 0.204 ± 0.047 0.204 ± 0.047 0 ± 0 0.408 ± 0.066 Tufted duck 0.091 ± 0.021 0.091 ± 0.021 0 ± 0 0.182 ± 0.03 Turnstone 0.01 ± 0.002 0.01 ± 0.002 0 ± 0 0.02 ± 0.003 Whimbrel 0.001 ± 0 0.001 ± 0 0 ± 0 0.002 ± 0 Wigeon 0.243 ± 0.06 0.243 ± 0.06 0 ± 0 0.486 ± 0.085 Wood sandpiper 0 ± 0 0 ± 0 0 ± 0 0 ± 0

Table 3–3: Summary of annual collision estimates following the Dublin Array approach for Option C (39 WTGs).

Species	Pre-breeding	Post-breeding	Other	Total
Black-tailed godwit	0.013 ± 0.002	0.013 ± 0.002	0 ± 0	0.026 ± 0.003
Bewick's swan	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Black-throated diver	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Canadian light-bellied brent	0.003 ± 0.001	0.003 ± 0.001	0 ± 0	0.006 ± 0.001
goose				
Common scoter	0.059 ± 0.013	0.059 ± 0.013	0 ± 0	0.118 ± 0.018
Corncrake	0.007 ± 0.002	0.007 ± 0.002	0 ± 0	0.014 ± 0.003
Curlew	0.007 ± 0.001	0.007 ± 0.001	0 ± 0	0.014 ± 0.001
Dunlin	0.061 ± 0.063	0.061 ± 0.063	0 ± 0	0.122 ± 0.089
Eider	0.018 ± 0.003	0.018 ± 0.003	0 ± 0	0.036 ± 0.004
Goldeneye	0.024 ± 0.005	0.024 ± 0.005	0 ± 0	0.048 ± 0.007
Great crested grebe	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Great northern diver	0.003 ± 0	0.003 ± 0	0.003 ± 0	0.009 ± 0
Greenland white-fronted	0.002 ± 0.001	0.002 ± 0.001	0 ± 0	0.004 ± 0.001
goose				
Greenshank	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Grey plover	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Hen harrier	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Knot	0.01 ± 0.002	0.01 ± 0.002	0 ± 0	0.02 ± 0.003
Lapwing	0.009 ± 0.002	0.009 ± 0.002	0 ± 0	0.018 ± 0.003
Long-tailed duck	0.026 ± 0.004	0.026 ± 0.004	0 ± 0	0.052 ± 0.006
Mallard	0.044 ± 0.009	0.044 ± 0.009	0.044 ± 0.009	0.132 ± 0.016
Marsh harrier	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Merlin	0.006 ± 0.005	0.006 ± 0.005	0 ± 0	0.012 ± 0.007
Oystercatcher	0.016 ± 0.004	0.016 ± 0.004	0 ± 0	0.032 ± 0.006
Pintail	0.009 ± 0.002	0.009 ± 0.002	0 ± 0	0.018 ± 0.003
Pochard	0.019 ± 0.004	0.019 ± 0.004	0 ± 0	0.038 ± 0.006
Purple sandpiper	0.001 ± 0	0.001 ± 0	0 ± 0	0.002 ± 0
Red-breasted merganser	0.011 ± 0.002	0.011 ± 0.002	0 ± 0	0.022 ± 0.003
Redshank	0.013 ± 0.003	0.013 ± 0.003	0 ± 0	0.026 ± 0.004
Ringed plover	0.009 ± 0.002	0.009 ± 0.002	0 ± 0	0.018 ± 0.003
Ruff	0.003 ± 0.001	0.003 ± 0.001	0 ± 0	0.006 ± 0.001
Sanderling	0.005 ± 0.001	0.005 ± 0.001	0 ± 0	0.01 ± 0.001

19 of 23

APEMGroup

Species	Pre-breeding	Post-breeding	Other	Total
Scaup	0.005 ± 0.001	0.005 ± 0.001	0 ± 0	0.01 ± 0.001
Shelduck	0.008 ± 0.002	0.008 ± 0.002	0.008 ± 0.002	0.024 ± 0.003
Short-eared owl	0.007 ± 0.002	0.007 ± 0.002	0 ± 0	0.014 ± 0.003
Shoveler	0.004 ± 0.001	0.004 ± 0.001	0.004 ± 0.001	0.012 ± 0.002
Slavonian grebe	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Snipe	0.263 ± 0.055	0.263 ± 0.055	0.263 ± 0.055	0.789 ± 0.095
Spotted crake	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Teal	0.198 ± 0.044	0.198 ± 0.044	0 ± 0	0.396 ± 0.062
Tufted duck	0.087 ± 0.021	0.087 ± 0.021	0 ± 0	0.174 ± 0.03
Turnstone	0.01 ± 0.002	0.01 ± 0.002	0 ± 0	0.02 ± 0.003
Whimbrel	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Wigeon	0.231 ± 0.055	0.231 ± 0.055	0 ± 0	0.462 ± 0.078
Wood sandpiper	0 ± 0	0 ± 0	0 ± 0	0 ± 0

Dublin Array Offshore Wind Farm

Revision: 2.0

4 References

Alerstam, T. (1990), 'Bird Migration', Cambridge: Cambridge University Press.

Alerstam, T., Rosen, M., Backman, J., Ericson, P. G. P. and Hellgren, O. (2007). Flight speeds among bird species: Allometric and phylogenetic effects. PLoS Biol 5(8): e197.

Band, W. (2012) Using a collision risk model to assess bird collision risks for offshore windfarms. The Crown Estate Strategic Ornithological Support Services (SOSS) report SOSS-02. <u>http://www.bto.org/science/wetland-and-marine/soss/projects</u>. Original published Sept 2011, extended to deal with flight height distribution data March 2012.

Burke, B., Lewis, L. J., Fitzgerald, N., Frost, T., Austin, G. and Tierney, T. D. (2019). Estimates of waterbird numbers wintering in Ireland, 2011/12 – 2015/16. Irish Birds 11, 1-12.

Cook, A.S.C.P., Humphries, E.M., Masden, E.A. and Burton, N.H.K. (2014) The avoidance rates of collision between birds and offshore turbines. BTO Research Report No 656 to Marine Scotland Science.

Donovan, C. (2018) Stochastic Band CRM – GUI User Manual, Draft V1.0, 31/03/2017.

HiDef Aerial Surveying Ltd. (2024). mCRM: Avian Migration Collision Risk Model. R package version f0.4.1, <u>https://hidefdevo.shinyapps.io/mCRM/</u> [Accessed March 2024].

Natural England (2022). Natural England interim advice on updated Collision Risk Modelling parameters (July 2022).

Ozsanlav-Harris, L., Inger, R. and Sherley, R. (2023). Review of data used to calculate avoidance rates for collision risk modelling of seabirds. JNCC Report 732, JNCC, Peterborough, ISSN 0963-8091.

R Core Team (2021). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>.

Robinson, R. A. (2017). Birdfacts: profiles of birds occurring in Britain & Ireland.

Snow, D.W., and Perrins, C. M. (eds.) (1998). The Birds of the Western Palearctic. Concise edition. Vol. 1. OUP, Oxford.

Stienen, E.W., Waeyenberge, V., Kuijken, E. and Seys, J. (2007). Trapped within the corridor of the southern North Sea: the potential impact of offshore wind farms on seabirds. In Birds and Wind farms. de Lucas, M., Janss, G.F.E. and Ferrer, M. (Eds). Quercus, Madrid.

Tjørnløv, R. S., Skov, H., Armitage, M., Barker, M., Jørgensen, J. B., Mortensen, L. O., and Uhrenholdt, T. (2023). Resolving Key Uncertainties of Seabird Flight and Avoidance Behaviours at Offshore Wind Farms.

Wright, L. J., Ross-Smith, V.H., Austin, G.E., Massimino, D., Dadam, D., Cook, A.s.c.p., Calbrade, N.A. and Burton, N.H.K. (2012). Assessing the risk of offshore wind farm development to migratory birds designated as features of UK Special Protection Areas (and other Annex 1 species). The Crown Estate Strategic Ornithological Support Services (SOSS) report SOSS-0

21 of 23

Woodward, I. D., Franks, S. E., Bowgen, K., Davies, J. G., Green, R. M. W., Griffin, L. R., Mitchell, C., O'Hanlon, N., Pollock, C., Rees, E. C., Tremlett, C., Wright, L. and Cook, A. S. C. P. (2023). Strategic study of collision risk for birds on migration and further development of the stochastic collision risk modelling tool, Work Package 1: Strategic review of birds on migration in Scottish waters.

Dublin Array Offshore Wind Farm

Revision: 2.0

GoBe Consultants Ltd Suites B2 & C2, Higher Mill Higher Mill Lane Buckfastleigh Devon TQ11 0EN

GoBe Consultants Ltd 5/2 Merchant's House 7 West George Street Glasgow Scotland G2 1BA

www.gobeconsultants.com